
.

.
Using Python as Configuration Language

Xia Xin
xiax@hepg.sdu.edu.cn

Shandong University

5th July 2013

Xia Xin 5th July 2013 Using Python as Configuration Language 1 / 22

Outline

Motivation

Framework

C++
User Algorithm
SniperMgr

CMT

Python

Summary

Xia Xin 5th July 2013 Using Python as Configuration Language 2 / 22

Outline

Motivation

Framework

C++
User Algorithm
SniperMgr

CMT

Python

Summary

Xia Xin 5th July 2013 Using Python as Configuration Language 3 / 22

Motivation

..1 We need a new framework.

..2 Gaudi is too complex for us.

..3 Have good compatibility with C++.

..4 Good user experience is also important.

Using Python with PyCintex package to handle C++ class

Xia Xin 5th July 2013 Using Python as Configuration Language 4 / 22

Outline

Motivation

Framework

C++
User Algorithm
SniperMgr

CMT

Python

Summary

Xia Xin 5th July 2013 Using Python as Configuration Language 5 / 22

Framework

..SniperMgr.Control
Python

. .
load

Shared
Library

..

Service

.

Algorithm

.

User
Algorithm

.

.
Tool

Control Python is mainly used for configuration.
User Algorithm needs to describe which variables to config.
SniperMgr is compiled with reflection informations, has interface
to Python.

Xia Xin 5th July 2013 Using Python as Configuration Language 6 / 22

Outline

Motivation

Framework

C++
User Algorithm
SniperMgr

CMT

Python

Summary

Xia Xin 5th July 2013 Using Python as Configuration Language 7 / 22

Outline

Motivation

Framework

C++
User Algorithm
SniperMgr

CMT

Python

Summary

Xia Xin 5th July 2013 Using Python as Configuration Language 8 / 22

User Algorithm

User Algorithm is always a class loaded by the framework. We can
not give a value to class member before instantiated.
Here we use global variables to receive the configurations from
framework.
For user

1 #include "setOption.h"
2

3 using namespace std;

4 Option(int, mint) //==========>>>
5 Option(string, mend)

6

7 MyClass::MyClass(const std::string& name)

8 : AlgBase(name)

9 {

10 m_myint = py_mint;

11 m_end = py_mend;

12 }

1 // setOption.h
2 #define Option(type, var) \
3 char* _Typeof##var = #type; \
4 type py_##var;

1 char* _Typeofmint = "int"; int py_mint;

2 char* _Typeofmend = "string"; string py_mend;

Xia Xin 5th July 2013 Using Python as Configuration Language 9 / 22

Outline

Motivation

Framework

C++
User Algorithm
SniperMgr

CMT

Python

Summary

Xia Xin 5th July 2013 Using Python as Configuration Language 10 / 22

SniperMgr

SniperMgr loads the so, and then transports values into library.

..1 Set a property of SniperMgr, i.e. m_evtMax, interface to
python:
void SetEvtMax(int i) { m_evtMax = i; }

..2 Set the value of loaded so, interface to python:
void SetOptions(std::string Class, std::string Var, std::string Value);

..3 Get the type of variable from so, and translate value in python
into proper type. Interface to shared library:
char** pType = (char**)dlsym(dl_handler, VarNameInC);

template <class TYPE>

bool SniperMgr::SetValue(void* dl_handler, string VarName, TYPE value);

Xia Xin 5th July 2013 Using Python as Configuration Language 11 / 22

Detials of some functions
1 void SniperMgr::SetOptions(string Class, string Var, string Value)

2 {

3 OPTIONS newOption;

4 newOption.ClassName = Class;

5 newOption.VarName = Var;

6 newOption.Value = Value;

7 Options.push_back(newOption);

8 }

9

10 template <class TYPE>

11 bool SniperMgr::SetValue(void* dl_handler, std::string VarName, TYPE value)

12 {

13 TYPE *pVar = static_cast<TYPE*>(dlsym(dl_handler, VarName.c_str()));

14 *pVar = value;

15

16 return true;

17 }

Xia Xin 5th July 2013 Using Python as Configuration Language 12 / 22

Make SniperMgr visiable to python

While C++ does not support the reflection well, we can not
determine which functions and data members are available for a
certain class. Reflex can add a type description on C++.

A C++ shared library can be called in third language with a simple
API, such as python, if it was compiled with reflection information
generated by Reflex.

genreflex ../app/SniperMgr.h --selection=../selection.xml

genreflex is a tool to parse header files and extract the reflection
information, included in Reflex and also ROOT.

Generated reflex cpp file should be linked in when building the
reflection library. (Following just used as example)

g++ -fPIC -rdynamic -O2 -shared -I$REFLEXHOME/include

SniperMgr_rflx.cpp SniperMgr.cc -o libSniperMgrDict.so

-L$REFLEXHOME/lib -lReflex

Xia Xin 5th July 2013 Using Python as Configuration Language 13 / 22

Outline

Motivation

Framework

C++
User Algorithm
SniperMgr

CMT

Python

Summary

Xia Xin 5th July 2013 Using Python as Configuration Language 14 / 22

CMT

Using CMT as the package manager, we should declare a pattern
in requirements file for doing the above action.

1 package SniperKernel

2

3 use ReflexInterface v*

4 ...

5 apply_pattern reflex_sniper_dictionary dictionary=SniperMgr \

6 headerfiles=$(SNIPERKERNELROOT)/app/SniperMgr.h \

7 selectionfile=$(SNIPERKERNELROOT)/dict/sniper_dictionary.xml

This pattern just needed by the SniperMgr class. For users’ and
the other packages, nothing changes in CMT config.

Xia Xin 5th July 2013 Using Python as Configuration Language 15 / 22

Outline

Motivation

Framework

C++
User Algorithm
SniperMgr

CMT

Python

Summary

Xia Xin 5th July 2013 Using Python as Configuration Language 16 / 22

Python calls C++ library

Thus, we can access the SniperMgr library in python script.
Two choices: Python with PyCintex & PyPy with cppyy

1 import PyCintex

2 PyCintex.loadDictionary(’libSniperMgrDict.so’)

3 Sniper = PyCintex.gbl.SniperMgr("test.txt")

4

5 Sniper.SetEvtMax(15)

6 Sniper.SetOptions("MyClass", "mint", "21")

7 Sniper.SetOptions("MyClass", "mend", "END!")

8

9 Sniper.initialize()

10 Sniper.run()

11 Sniper.finalize()

PyPy

1 import cppyy

2 cppyy.load_reflection_info(’libSniperMgrDict.so’)

3 Sniper = cppyy.gbl.SniperMgr("test.txt")

Keep libSniperMgrDict.so available in LD_LIBRARY_PATH.

Xia Xin 5th July 2013 Using Python as Configuration Language 17 / 22

Option file

Option file will be not used in the future, but now we still need it.
1 Sniper.Cycler = "NormCycler";

2 Sniper.InputSvc = "NONE";

3

4 Sniper.Dlls += { "MyClass" };

5 AlgMgr.Contents += { "MyClass" };

6

7 #include "$ROOTWRITERROOT/share/RootWriter.txt"
8

9 RootWriter.Output = { "FILE1" : "output1.root",

10 "FILE2" : "output2.root" };

11

12 Sniper.LogLevel = 3; //Info

Xia Xin 5th July 2013 Using Python as Configuration Language 18 / 22

Output

1 > python run.py

2 *********************** _ _ _ _ _ _

3 ** Welcome to SNiPER ** : Software for Non-collider Physics ExpeRiments

4 ***********************

5 Sniper.SniperMgr INFO: test.txt

6 ...

7 Sniper.SniperMgr INFO: Select InputSvc : NONE

8 Sniper.SniperMgr INFO: Select Cycler : NormCycler

9 SvcMgr.SvcMgr INFO: Load service : RootWriter

10 SvcMgr.SvcMgr INFO: Load service : NormCycler

11 AlgMgr.AlgMgr INFO: Add algorithm : MyClass

12 Sniper.initialize INFO: Successfully initialized

13 fibonacci(21) = 10946

14 ...

15 fibonacci(35) = 9227465

16 Sniper.run INFO: Total processed events 15

17 END!

18 Sniper.finalize INFO: Successfully finalized

19 Sniper.~SniperMgr INFO: Terminated

Xia Xin 5th July 2013 Using Python as Configuration Language 19 / 22

Outline

Motivation

Framework

C++
User Algorithm
SniperMgr

CMT

Python

Summary

Xia Xin 5th July 2013 Using Python as Configuration Language 20 / 22

Summary

..1 For SniperMgr, a python interface is defined.

..2 Give an interface to the dynamic loaded library.

..3 Make the user algorithm property available in python.

Next to do...

Make any user given classes available in python.
Increase the robustness of the interface code.
Give a more pythonic interface in the python script.

Xia Xin 5th July 2013 Using Python as Configuration Language 21 / 22

That’s all

Thanks for your attention!

Xia Xin 5th July 2013 Using Python as Configuration Language 22 / 22

	Motivation
	Framework
	C++
	User Algorithm
	SniperMgr

	CMT
	Python
	Summary

