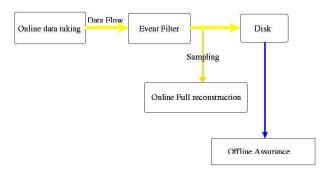
Online Reconstruction and Data Quality Check @ BESIII

HEP Software Workshop 2013


Yuan Wenlong

Nanjing University

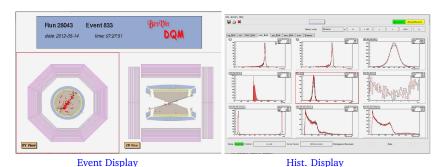
Weihai, July 4, 2013

Overall data flow structure

- Data Acquisition(DAQ):Online data taking
- Data Quality Monitoring(DQM):Online full reconstruction
- Data Quality Assurance(DQA):Offline full reconstruction

2 / 19

Outline


- An introduction to DQM system including online reconstruction
- An introduction to DQA system
- Data quality checks on DQM and DQA systems
- Summary

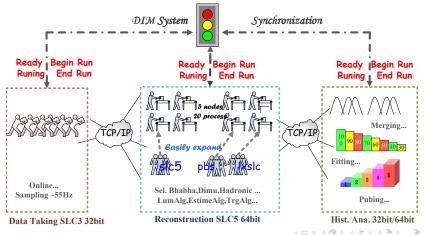
What can DQM Results do?

- Real time do everything below
- Single event display
- Full reconstruction and analysis
- Monitor the quality of sub detectors:TRG,MDC,TOF,EMC,MUC
- Monitor the quality of physic events:Bhahba,Dimu,Hadronic...
- Examples:
 - Pub vertex infomation (very useful for accelerator person)
 - ► Get mean and resolution of MDC, TOF, EMC, MUC...
 - ► Get the N_{Bhahba}/N_{total} , N_{Hadron}/N_{total} , N_{2prong}/N_{total} ...
- All of the real time results can be found from website or database...

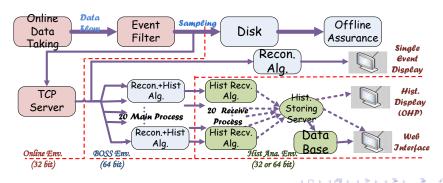
DQM Results Display

Single Event Display and Online Histogram Display of DQM

Real Time


DQM Web Interface

- Check all DQM and DAQ histogram history from Website
- Automatic compare all the histogram between the real time run and the reference run(implemented partially)
- Manually compare any two run of histogram


An Overall of DQM System

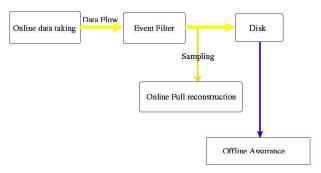
- Independence of each sub system
- Increase Compatibility
- Easily Expand
- More Efficiency

DQM Framework

- 3 sub system in DQM
 - ► Online Environment Sys.: SLC3 32bit (Sending Raw Data)
 - ▶ Boss Environment Sys.: SLC5 64bit (Fully Reconstruction)
 - ► Hist Analyse Env. Sys.: SLC4 32bit (Analyzing Histogram)
- The data transmission based on TCP/IP protocol, sampling(\sim 55 Hz), and synchronization based on DIM
- Real time; Online full reconstruction

Properties of DQM System

Stability of DQM System


Sub Algorithm	Stability	
Single Event Display	> 7day	
Reconstruction Alg.	~15day	
Histogram Sub Alg.	~15day	
Online Hist Display	> 5day	

Source usage

Algorithm	CPU Time	CPU Util.	Memory Used	Virtual Memory
Reconstruction	6h32min	~ 99%	~ 350MB	~ 1300MB
Histogram	2min	< 0.5%	~ 75MB	~ 200MB

An introduction to DQA system

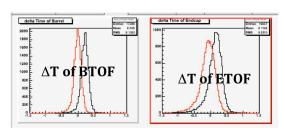
- Run after data is reconstructed offline
- Output histograms run by run
- Histograms are stored in root files
- The difference between DQM and DQA:
 - ▶ DQM: Online full Reconstruction, sampling data on real time
 - ▶ DQA: Offline full Reconstruction, all data for precise results

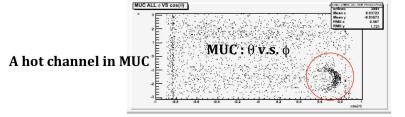
Control samples used in DQA system

- Inclusive hadrons
- Inclusive K_s , $K^*(892)$, Λ , ϕ
- Dtag
- Bhabha
- Di-muon
- $J/\psi \rightarrow \rho \pi$
- $J/\psi \to p\overline{p}\pi^+\pi^-$
- $J/\psi \rightarrow K_s K \pi$
- $\psi' \to \pi \pi J/\psi, J/\psi \to l^+l^-$
-

Data quality checks on DQM and DQA system

- The data quality checks are available on both DQM and DQA system
- Data quality checks on DQM focus on sub-detectors' performance of BESIII and basic physics results
- Data quality checks on DQA focus on the validation of offline software release (BOSS) version, more detailed physics results and common systematic errors for physics analyzing

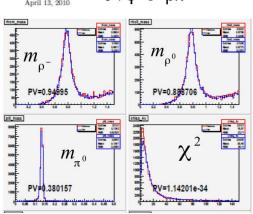

Items in Data Quality Checks


- The mean and resolution of MDC, TOF, EMC, MUC...
- The N_{Bhahba}/N_{total} , N_{Hadron}/N_{total} , N_{2prong}/N_{total} ...
- BOSS release Validation
 - Software validation (MC)
 - Data & MC comparison

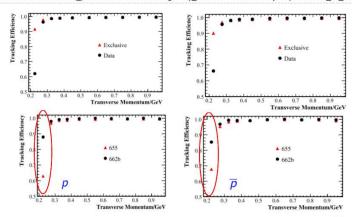
Items in BOSS release Validation

- MC production, FSR simulation
- Vertex distribution
- Mass shift
- Tracking efficiency
- dE/dx χ distribution (mean,sigma)
- TOF ΔT distribution (mean, sigma)
- PID efficiency
- Kinematic fit efficiency
- Event selection efficiency
-

Δ**T shift 0.2 ns**Since accelerator problem

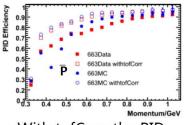


Software Validation Results

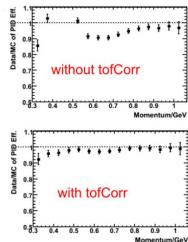

 $J/\psi \ \mathbb{R} \ \rho\pi$

Contents

- 1 ValidJpsiRhopi
- 2 ValidKsKpiAlg
- 3 ValidPhyJPsill
- 4 ValidPPbarAlg



Tracking efficiency (p from $J/\psi \rightarrow pp\pi\pi$)



tracking efficiency for low momentum p, p
~40% higher due to the fix of overflow problem.

TOF PID efficiency

- With tofCorr, the PID efficiency improved significantly
- MC/data is more consistence

Summary

- The Data Quality Monitoring(DQM) and Data Quality Assurance (DQA) systems have been introduced, which are based on online and offline reconstruction respectively
- The data quality checks are available on both DQM and DQA system, which ensures the successful and robust data taking and physics analysis on BESIII.

Thank you!